Welcome!

Kris Ann Bolt, SBR President

SBR WELCOMES YOU TO AN EDUCATIONAL WORKSHOP

CALCULATING YOUR CARBON FOOTPRINT

Thursday February 6th, 4:00 to 6:00 PM @ National Grid 144 Kensington Avenue, Buffalo

nationalgrid

Invest - Connect - Learn - Recognize

www.wnysustainablebusiness.org

Quarterly topic perspectives on:

- By the numbers metrics matter
- Clean production & chemical reduction
- Sustainability Basics to build & develop your business
- Challenges & trends in pollution prevention
- The business case for action
- Resource connections

Western New York Sustainable Business Roundtable

- How to calculate, collaborate and cut your carbon footprin
- What CLCPA will mean for your business
- ullet Exploring the circular economy, green engineering f a chemistry
- Wasted food & Renewable Energy Credit

SPRING SEMESTER - LAND & LAKES

- Smart pesticide use and management for toxics reduction
- Ideas for green and blue infrastructure solutions
- Maximizing pollinators & native plants in corporate landscape
- The future of facility and grounds maintenance

GOAL - TRANSFORM CORPORATE LANDSCAPES

SUMMER CAMP - RETHINKING BUILDINGS

- Net Zero Buildings
- Energy Conservation
- Renewable Energy
- Healthy Material Selection & Use
- Greener parking lots & roofs

GOAL - CREATE BUILDINGS FOR TOMORROW

FALL SEMESTER - TRANSFORMING TRANSPORTATION

- · Electric charging station
- Policies to reduce employee commute
- Test drive electric vehicle
- The importance of healthy materials in electric vehicle

GOAL - CONNECTING PEOPLE & PLACES

Apply before March 18th!

Nominate before March 18th!

SBR WELCOMES YOU TO AN EDUCATIONAL WORKSHOP

CALCULATING YOUR CARBON FOOTPRINT

Thursday February 6th, 4:00 to 6:00 PM @ National Grid 144 Kensington Avenue, Buffalo

nationalgrid

Today's host

nationalgrid

Ken Kujawa Regional Director National Grid

Derek Nichols Sustainability Engagement Coordinator, University at Buffalo

WHATIS AUS EXENTORY

UNIVERSITY OF NEW YORK AT BUFFALO

ercent Change in Greenhouse Gas Emissions 2017 vs. Baseline 2006 and Emission Reduction Target Goals

	TOTAL SCOPE 1	TOTAL SCOPE 2	TOTAL SCOPE 3	TOTAL SCOPE 1 & 2	TOTAL SCOPE 1, 2, & 3	TOTAL NET
CHANGE IN EMISSIONS	↑ 13.00%	◆ 90.19%	↑ 49.64%	◆ 61.51%	₩ 33.56%	₩ 31.839
PER 1,000 SQ. FT.	↑ 5.29%	◆ 90.86%	↑ 39.43%	◆ 64.14%	→ 38.10%	₩ 36.489
PER FULLTIME ENROLLMENT	↑ 3.10%	◆ 91.05%	↑ 36.52%	◆ 64.88%	→ 39.39%	₩ 37.809
EMISSION REDUCTION TARGETS	75% by 2020	100% by 2030		75% by 2020	100% by 2030	

nstitutional Information

SIGN DATE Mar 7, 2007

PRESIDENT Satish K Tripathi

IMPLEMENTATION LIAISON Ryan Mcpherson

SUSTAINABILITY WEBSITE

Link

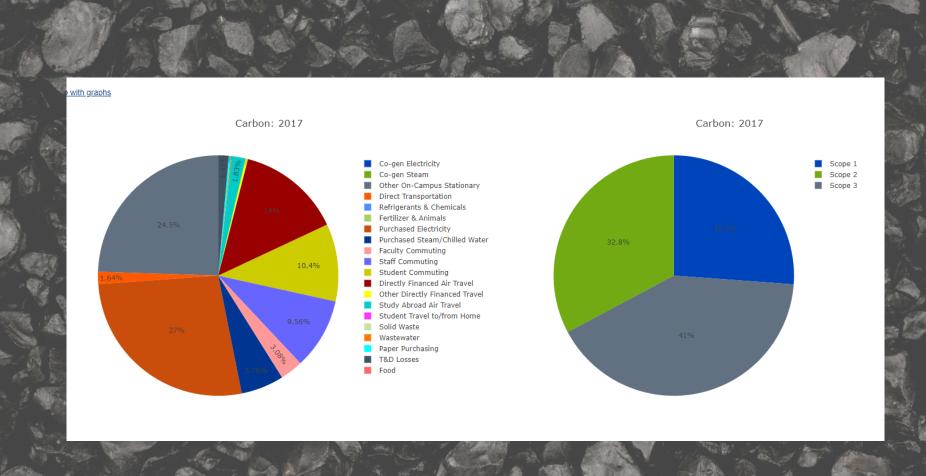
lembership – Ratings

STARS RATING GRITS ()
Gold -

Reports

INSTITUTIONAL PROFILE

ANNUAL PROGRESS EVALUATION


CLIMATE ACTION PLAN

GHG REPORTS

2014, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998

View

2017

MIACUSILL										
				Institu	tional Da					
Spring		Budget		institu	rional Da	Physical Size				
Semester End	Operating Budget	Research Budget	Energy Budget	Time Student	Part- Time Students	Summer School Students	Facult y	Staff	Total Building Space	Research Building
UNITS	\$	\$	\$	=	#	#	#	#	Square feet	
	The second secon			The state of the s	1740	All the	200	CONTRACT	(4) 医初速性	

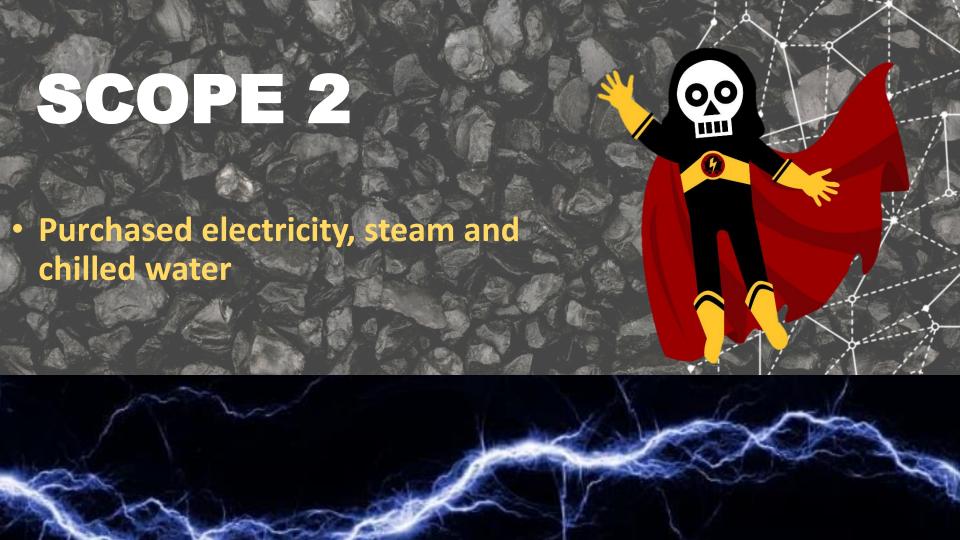
		Scope 1 Emissions Sources On-Campus Stationary Sources																										
								On	-Campus	Stationar	y Source	15								Direct Transportation Sources								
	On-Cam	On-Campus Cogeneration Plant(s) Other On-Campus Stationary Sources														University Fleet												
	Electric Output	Steam Output	Electric Efficien cy	Steam Efficien cy	Residual Oil (#5-6)	Distillate Oil (#1- 4)	Natural Gas	LPG (Propan e)	Coal (Steam Coal)	Incinerat ed Waste	Wood Chips	Wood Pellets	Grass Pellets	ual BioHe	e BioHea	Attributab le Solar - Electric	Attributab le Solar - Thermal	Attributab le Wind	Other	Gasolin e Fleet	Diesel Fleet	Natural Gas Fleet	E85 Fleet	B5 Fleet	B20 Fleet	B100	Hydrog en	Ωther
et	kWh	MMBtu	%	%	Gallons	Gallons	MMBtu	Gallons	Short Tons	Short Tons	Short Tons	Short Tons	Short Tons	Gallon 8	Gallon 8	kWh	MMBtu	kWh	MMB: u	Gallons	Gallons	MMBtu	Gallons	Gallon	Gallons	Gallo ns	MMBlu	MMBtu

			Direct	Transp	ortation	Source	es e					Refrig	erants 8	& Chemical	s		Fui criaseu c	missions Sou recurrency, are	
	Gasolin Diesel Natural E85 B5 B20 B100 Hydrog en Gallons Gallons MMBtu Gallons Gallons Gallons Gallons MMBtu								Refrigerants & Chemicals Electricity					Electricity	Steam	9			
er er	Gasolin e Fleet							Hydrog en	Other	Electric Fleet	HFC- 134a	R-404a	HCFC- 22	HCFE- 235da2	HG- 10	Other	SET «GRID SUBRE	SET FUEL MIX	5
B S	Gallons	Gallons	MMBtu	Gallons	Gallon 8	Gallons	Gallo ns	MMBtu	MMBtu	kWh	Pounds	Pounds	Pounds	Pounds	Poun ds	Poun ds	kWh	MMBtu	

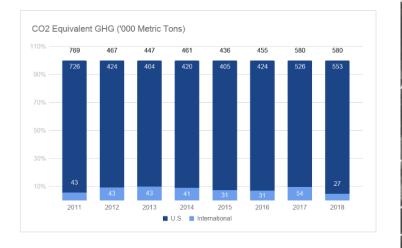
Scope 2	Scope 2 Emissions Sources																			
Purchased Electrici	ty, Steam, and C	hilled Water	Commuting - click here to enter data Directly Financed Outsourced Travel												Study					
Electricity	Steam	Chilled Water		Faculty /		Stu	dent Commu	ting		Air '	Travel		Other							
SET eGRID SUBREGI	SET FUEL MIX		Carbon-free Modes	Automobile	Bus	Light Rail	Commuter Rail	Carbon- free Modes	Automobile	Bus	Light Rail	Commuter Rail	Faculty / Staff	Students	Train	Taxi / Ferry / Rental Car	Bus		Personal Mileage Reimbursement	
kWh	MMBtu	MMBtu	Miles	Miles	Passenger Miles	Passenger Miles	Passenger Miles	Miles	Miles	Passenger Miles	Passenger Miles	Passenger Miles	Miles	Miles	Passenge r Miles	Miles	Passenger Miles	Passenger Miles	Miles	Passenger Miles

											Off	sets				
Wa	stewater				Paper			1								
Central Treatment System			Uncoated Freesheet	Uncoated Freesheet	Uncoated Freesheet	Uncoated Freesheet	Uncoated Freesheet	Offsets Renewable Energy Certificates (REC entered in Scope 2 to align with new s								
Aerobi	c Anaerobic	Anaerobic Digestion	0% Recycled	25% Recycled	50% Recycled	75% Recycled	100% Recycled	On-campus Composting	Forest Preservation	Retail Offsets (High End)	Retail Offsets (Low End)	Other .	Green Power Certificates	Retail Offsets (High End)	Retail Offsets (Low End)	Other
Gallon	s Gallons	Gallons	1bs	1bs	lbs	lbs	lbs	Short Tons of Wet	MT eCO ₂	MT eCO ₂	MT eCO ₂	MT				

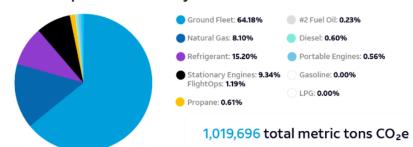
WEATAREAS

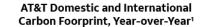

SCOPE 1

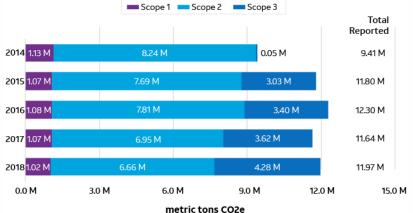
- Energy produced on site
- Direct transportation
- Refrigerants and chemicals


CLOROX

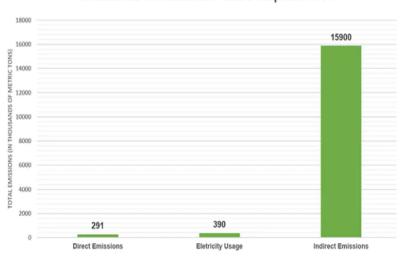
Scope 1, 2 and 3 GHG Emissions Trends


GHG Emissions by Geography




AT&T

2018 Scope 1 Emissions by Source



STARBUCKS

Starbucks Greenhouse Gas Footprint FY17

The 2017 inventory found our Scope 1, Scope 2 and Scope 3 emissions were 16,581,000 metric tons of carbon dioxide equivalent. According to the Protocol, Scope 1 includes direct GHG emissions from sources that are owned or controlled by the company. For Starbucks these include manufacturing plants, store operations, and company-owned vehicles and aircraft. Scope 2 includes market-based electricity emissions from the generation of purchased electricity consumed by the company. Through the purchase of Renewable Energy Credits (RECs) we are able to offset 62% of our store emissions globally. Scope 3 emissions is the largest component to our footprint. It includes purchased goods and services, as well as, emissions from our licensees and partnerships. The leading contributors for Starbucks are food, dairy, coffee and packaging.

WHO'S YED

- HF
- Utility officers
- Project Managers
- Contract/Finance
- Marketing
- Logistics
- Sustainability champion
- Consultants?

45 FRART

- Build a committee
- Decide on a scope
- Develop a plan for monitoring and improvement (a Climate Action Plan)

- Sets a baseline
- Establishes a system driven towards efficiency
- Value alignment

TOOLS

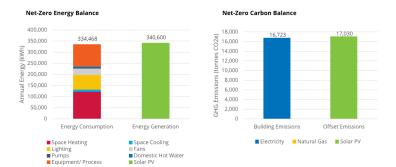
CoolClimate Network
Smart Tools for a Cooler Planet

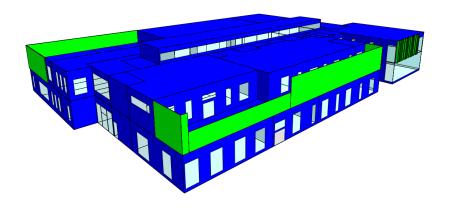
J. Willems Ransom Senior Designer, McCallum Sather

mc Callum Sather

The Joyce Centre

- Largest institutional, Zero
 Carbon building in Canada
- 96,000-square-foot, solarpowered, state-of-the-art research, learning and lab facility
- Modular, future-proofed furniture and spaces that adapt to change


Endress+Hauser


- Institutional projects inspire/catalyst for private industry
- Net Zero Energy, Zero Carbon, LEED Gold
- Natural light, control, comfort, accessibility
- Science on display

Endress+Hauser

- Geothermal
- Heat pump
- DOAS
- Solar panels
- EUI targets
- Interactive dashboards

MacNaughton Building

- Two phase lab renovation
- New HVAC & plumbing
- Provision of 58 low-flow variable volume fume hoods
- New major mechanical equipment

energy and emissions reductions

\$96,756 energy cost savings

311 tCO2e

estimated greenhouse gas emissions per year

CO2 emissions from

37.2

homes' energy use for one year

CO2 emissions from

40 million

smartphones charged

CO2 emissions from

339,993

pounds of coal burned

GHG emissions from

760,391

miles driven by an average car

GHG emissions avoided by

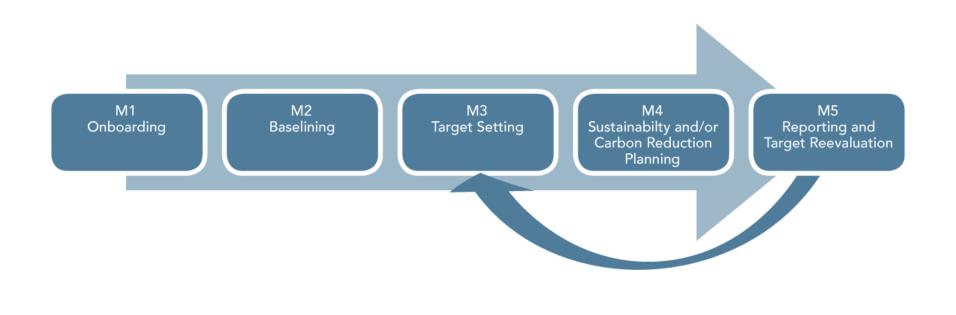
13,570

trash bags of waste recycled instead of landfilled

Carbon sequestered by

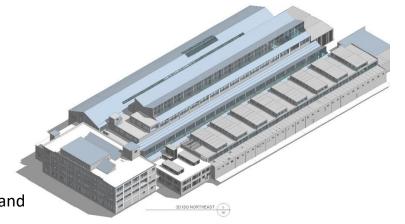
5,142

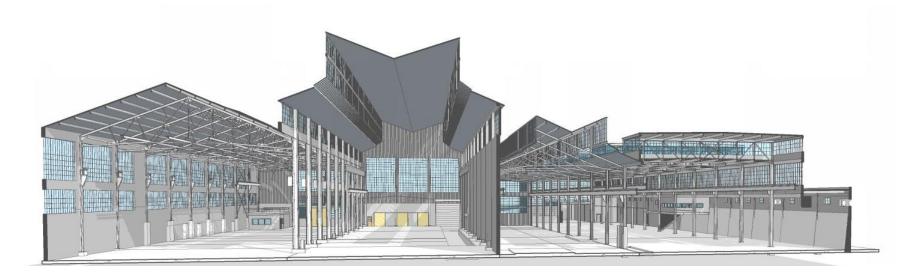
tree seedlings grown for 10 years



Choluteca Bridge - 1930

New Choluteca Bridge - 1997




LCA LIFE CYCLE ASSESSMENT METHODS

LCA standards ISO 14040-14044, ISO 21930:2017, ISO 21931:2010, EN 15804:2012, and EN 15978:2011

GaBi databases and modeling principles

LCA database that combines material attributes, assembly details, and architectural specifications with environmental impact data

LCA - ENVIRONMENTAL IMPACT CATEGORIES

1. Acidification Potential (AP) kg SO₂eq

1. A measure of emissions that cause acidifying effects to the environment.

2. Eutrophication Potential (EP) kg Neq

1. A measure of macronutrients (nitrogen (N) and phosphorus (P)

3. Global Warming Potential (GWP) kg CO₂eq

1. A measure of greenhouse gas emissions

4. Ozone Depletion Potential (ODP) kg CFC-11eq

1. A measure of air emissions that contribute to the depletion of the stratospheric ozone layer

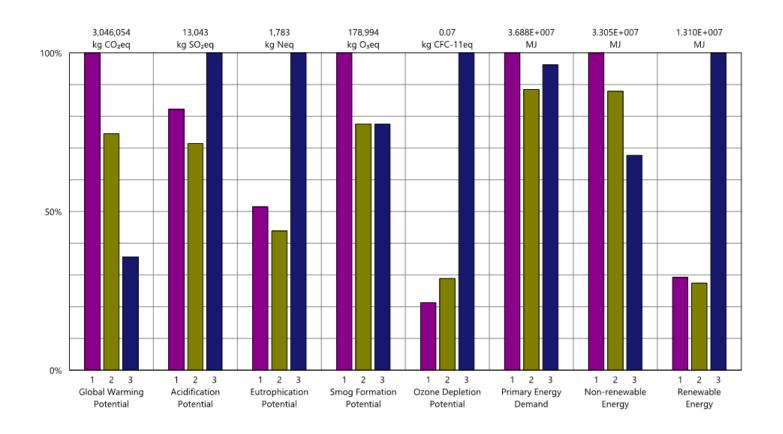
5. Smog Formation Potential (SFP) kg O₃eq

1. A measure of ground level ozone, caused by various chemical reactions between nitrogen oxides (NO_x) and volatile organic compounds (VOCs) in sunlight.

6. Primary Energy Demand (PED) MJ (lower heating value)

1. A measure of the total amount of primary energy extracted from the earth.

7. Non-Renewable Energy Demand MJ (lower heating value)

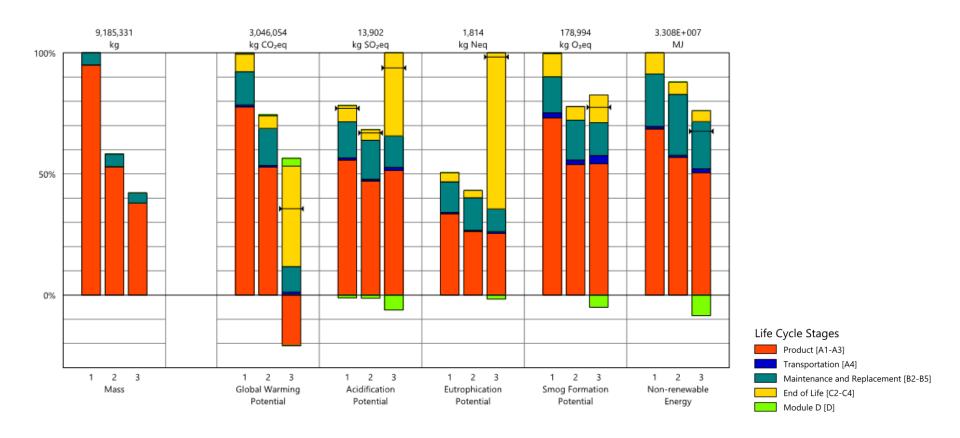

1. A measure of the energy extracted from non-renewable resources (e.g. petroleum, natural gas, etc.)

8. Renewable Energy Demand MJ (lower heating value)

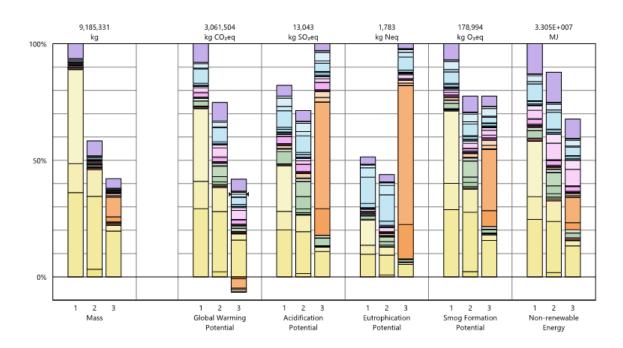
1. A measure of the energy extracted from renewable resources (e.g. hydropower, wind energy, solar power, etc.)

LIFE CYCLE STAGES

PRODUCT	CONSTRUCTION	USE	END-OF-LIFE	MODULE D
A1. Extraction A2. Transport (to factory) A3. Manufacturing	A4. Transport (to site) A5. Construction Installation	B1. Use B2. Maintenance B3. Repair B4. Replacement B5. Refurbishment	C1. Demolition C2. Transport (to disposal) C3. Waste processing C4. Disposal	D. Benefits and loads beyond the system boundary from: 1. Reuse 2. Recycling 3. Energy recovery
		B6. Operational energy B7. Operational water		


Legend

Design Options

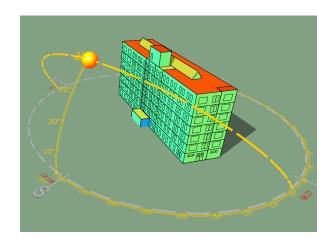


Results by LIFE CYCLE STAGES

Results by DIVISION

03 - Concrete Cast-in-place concrete, structural concrete, 2501-3000 psi Cast-in-place concrete, structural concrete, 3001-4000 psi Cast-in-place concrete, structural concrete slab Precast concrete slab Stair, precast single run (stretcher) Cast-in-place concrete, structural concrete, 4001-5000 psi 04 - Masonry Brick 05 - Metals Aluminum, round tube Stair, steel plate Steel, 2L-section Steel, C-stud metal framing Steel, C-stud metal framing with insulation Steel, deck Steel, furring channel Steel, HSS section Steel, sheet, carbon steel Steel, W section (wide flange shape) 06 - Wood/Plastics/Composites Cross laminated timber (CLT) Glue laminated timber (Glulam) Omamental wood Plywood, exterior grade Plywood, interior grade Wood framing 07 - Thermal and Moisture Protection Aluminum siding Asphalt felt sheet Metal wall panels, plate Mineral wool, board, generic Polyethelene sheet vapor barrier (HDPE) Polyurethane (PUR), board SBS modified bitumen, sheet 08 - Openings and Glazing Aluminum mullion system Aluminum mullion, inclusive of finish Curtainwall System (including glazing) Door, exterior, glass Door, exterior, wood, solid core Door, interior, steel Door, interior, wood, MDF core, flush Glazing, double pane IGU Post or guard rail, laminated glass 09 - Finishes Flooring, engineered wood plank Wall board, gypsum

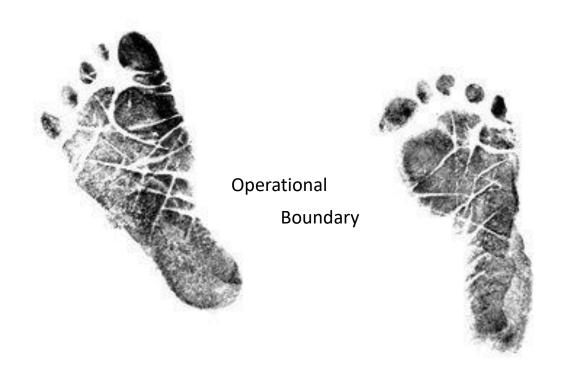
Westinghouse HQ



Westinghouse HQ

- With RDH we completed an Energy Consumption, Cost and Net Present Value Analysis Report
- Heat pumps
- DOAS
- Net zero ready

Assessment Methods



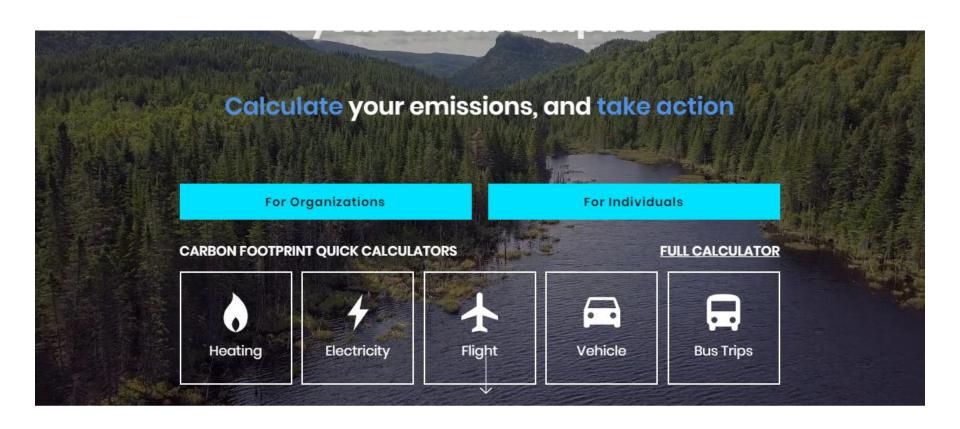
EPA Simplified GHG Emissions Calculator (SGEC) Vers

Version 5 March 2018

	Energy	Transportation	Waste
Direct	-Stationary Combustion -Refrigeration -Electricity -Steam (Purchased)	Vehicles that fall within your organizational boundary - cars, trucks, propane forklifts, aircraft, boats. Only vehicles owned or leased by your organization are typically included	Fire Suppression Purchased Gases – Industrial gases used in manufacturing Waste Gases – Flare gases
	Data Centers – Cloud	Travel for business using	Waste

Computing Greenhouse gas offsets

Onsite renewables


transportation other than owned or leased vehicles (e.g., commercial airline flights, rental cars, trains) Employees commute to work in personal vehicles or use public

transportation

Recycling Compost

https://www.epa.gov/energy/power-profiler#/NYUP

https://coolclimate.berkeley.edu/calculator

CoolClimate Network

Average Footprint

3mT per employee / year

McCallumSather averaged 117mT per year – average

(On average individuals average 18mT per person / year)

Direct vs Indirect Sources

Direct 20%

Office Power and Heat

AC and Refrigeration

Fire Suppression

Mobile Devices

Waste

Recycling

2018 Direct - 18 Tonnes CO2e

Indirect 80%

Work From Home

Personnel Cell Phones

Employee Commuting

Business Travel

Data?

Transportation – 39 employees surveyed

Average of 740 L of gas per employee per year 2.96 L of gas per employee per day (Based on 250 working days a year)

2018 - 28,864.19 L or **67.8 Tonnes CO2e** 2019 - 40,700.00 L or **93.56 Tonnes CO2e**

Dato

- Monitors
- Laptops,
- Connectivity Hardware

- Bandwidth Send Receive
- Compute Data Processing
- Storage Flash Data Array Active not Latent
- Connectivity
 — Network at Datacenter

Thanks for coming!

www.wnysustainablebusiness.org

